# ADMISSIBLE CONSTANTS FOR GENUS 2 CURVES 

ROBIN DE JONG


#### Abstract

S.-W. Zhang recently introduced a new adelic invariant $\varphi$ for curves of genus at least 2 over number fields and function fields. We calculate this invariant when the genus is equal to 2 .


## 1. Introduction

Let $X$ be a smooth projective geometrically connected curve of genus $g \geq 2$ over a field $k$ which is either a number field or the function field of a curve over a field. Assume that $X$ has semistable reduction over $k$. For each place $v$ of $k$, let $N v$ be the usual local factor connected with the product formula for $k$.

In a recent paper [11 S.-W. Zhang proves the following theorem:
Theorem 1.1. Let $(\omega, \omega)_{a}$ be the admissible self-intersection of the relative dualizing sheaf of $X$. Let $\left\langle\Delta_{\xi}, \Delta_{\xi}\right\rangle$ be the height of the canonical Gross-Schoen cycle on $X^{3}$. Then the formula:

$$
(\omega, \omega)_{a}=\frac{2 g-2}{2 g+1}\left(\left\langle\Delta_{\xi}, \Delta_{\xi}\right\rangle+\sum_{v} \varphi\left(X_{v}\right) \log N v\right)
$$

holds, where the $\varphi\left(X_{v}\right)$ are local invariants associated to $X \otimes k_{v}$, defined as follows:

- if $v$ is a non-archimedean place, then:

$$
\varphi\left(X_{v}\right)=-\frac{1}{4} \delta\left(X_{v}\right)+\frac{1}{4} \int_{R\left(X_{v}\right)} g_{v}(x, x)\left((10 g+2) \mu_{v}-\delta_{K_{X_{v}}}\right)
$$

where:
$-\delta\left(X_{v}\right)$ is the number of singular points on the special fiber of $X \otimes k_{v}$,
$-R\left(X_{v}\right)$ is the reduction graph of $X \otimes k_{v}$,

- $g_{v}$ is the Green's function for the admissible metric $\mu_{v}$ on $R\left(X_{v}\right)$,
- $K_{X_{v}}$ is the canonical divisor on $R\left(X_{v}\right)$.

In particular, $\varphi\left(X_{v}\right)=0$ if $X$ has good reduction at $v$;

- if $v$ is an archimedean place, then:

$$
\varphi\left(X_{v}\right)=\sum_{\ell} \frac{2}{\lambda_{\ell}} \sum_{m, n=1}^{g}\left|\int_{X\left(\bar{k}_{v}\right)} \phi_{\ell} \omega_{m} \bar{\omega}_{n}\right|^{2}
$$

where $\phi_{\ell}$ are the normalized real eigenforms of the Arakelov Laplacian on $X\left(\bar{k}_{v}\right)$ with eigenvalues $\lambda_{\ell}>0$, and $\left(\omega_{1}, \ldots, \omega_{g}\right)$ is an orthonormal basis for the hermitian inner product $(\omega, \eta) \mapsto \frac{i}{2} \int_{X\left(\bar{k}_{v}\right)} \omega \bar{\eta}$ on the space of holomorphic differentials.

[^0]Apart from giving an explicit connection between the two canonical invariants $(\omega, \omega)_{a}$ and $\left\langle\Delta_{\xi}, \Delta_{\xi}\right\rangle$, Zhang's theorem has a possible application to the effective Bogomolov conjecture, i.e., the question of giving effective positive lower bounds for $(\omega, \omega)_{a}$. Indeed, the height of the canonical Gross-Schoen cycle $\left\langle\Delta_{\xi}, \Delta_{\xi}\right\rangle$ is known to be non-negative in the case of a function field in characteristic zero, and should be non-negative in general by a standard conjecture of Gillet-Soulé (op. cit., Section 2.4). Further, the invariant $\varphi$ should be non-negative, and Zhang proposes, in the non-archimedean case, an explicit lower bound for it which is positive in the case of non-smooth reduction (op. cit., Conjecture 1.4.2). Note that it is clear from the definition that $\varphi$ is non-negative in the archimedean case; in fact it is positive (op. cit., Remark after Proposition 2.5.3).

Besides $\varphi\left(X_{v}\right)$, Zhang also considers the invariant $\lambda\left(X_{v}\right)$ defined by:

$$
\lambda\left(X_{v}\right)=\frac{g-1}{6(2 g+1)} \varphi\left(X_{v}\right)+\frac{1}{12}\left(\varepsilon\left(X_{v}\right)+\delta\left(X_{v}\right)\right)
$$

where:

- if $v$ is a non-archimedean place, the invariant $\delta\left(X_{v}\right)$ is as above, and:

$$
\varepsilon\left(X_{v}\right)=\int_{R\left(X_{v}\right)} g_{v}(x, x)\left((2 g-2) \mu_{v}+\delta_{K_{X_{v}}}\right)
$$

- if $v$ is an archimedean place, then:

$$
\delta\left(X_{v}\right)=\delta_{F}\left(X_{v}\right)-4 g \log (2 \pi)
$$

with $\delta_{F}\left(X_{v}\right)$ the Faltings delta-invariant of the compact Riemann surface $X\left(\bar{k}_{v}\right)$, and $\varepsilon\left(X_{v}\right)=0$.
The significance of this invariant is that if $\operatorname{deg} \operatorname{det} R \pi_{*} \omega$ denotes the (non-normalized) geometric or Faltings height of $X$ one has a simple expression:

$$
\operatorname{deg} \operatorname{det} R \pi_{*} \omega=\frac{g-1}{6(2 g+1)}\left\langle\Delta_{\xi}, \Delta_{\xi}\right\rangle+\sum_{v} \lambda\left(X_{v}\right) \log N v
$$

for $\operatorname{deg} \operatorname{det} R \pi_{*} \omega$, as follows from the Noether formula:

$$
12 \operatorname{deg} \operatorname{det} R \pi_{*} \omega=(\omega, \omega)_{a}+\sum_{v}\left(\varepsilon\left(X_{v}\right)+\delta\left(X_{v}\right)\right) \log N v .
$$

Now assume that $X$ has genus $g=2$. Our purpose is to calculate the invariants $\varphi\left(X_{v}\right)$ and $\lambda\left(X_{v}\right)$ explicitly. For the $\lambda$-invariant we obtain:

- if $v$ is non-archimedean, then:

$$
10 \lambda\left(X_{v}\right)=\delta_{0}\left(X_{v}\right)+2 \delta_{1}\left(X_{v}\right)
$$

where $\delta_{0}\left(X_{v}\right)$ is the number of non-separating nodes and $\delta_{1}\left(X_{v}\right)$ is the number of separating nodes in the special fiber of $X \otimes k_{v}$;

- if $v$ is archimedean, then:

$$
10 \lambda\left(X_{v}\right)=-20 \log (2 \pi)-\log \left\|\Delta_{2}\right\|\left(X_{v}\right),
$$

where $\left\|\Delta_{2}\right\|\left(X_{v}\right)$ is the normalized modular discriminant of the compact Riemann surface $X\left(\bar{k}_{v}\right)$ (see below).
Thus, the $\lambda\left(X_{v}\right)$ are precisely the well-known local invariants corresponding to the discriminant modular form of weight 10 [6] (9] 10. In particular we have:

$$
\operatorname{deg} \operatorname{det} R \pi_{*} \omega=\sum_{v} \lambda\left(X_{v}\right) \log N v
$$

and we recover the fact that the height of the canonical Gross-Schoen cycle vanishes for $X$.

## 2. The non-archimedean case

Let $k$ be a complete discretely valued field. Let $X$ be a smooth projective geometrically connected curve of genus 2 over $k$. Assume that $X$ has semistable reduction over $k$. In this section we give the invariants $\varphi(X)$ and $\lambda(X)$ of $X$.

The proof of our result is based on the classification of the semistable fiber types in genus 2 and consists of a case-by-case analysis. The notation we employ for the various fiber types is as in [8]. We remark that there are no restrictions on the residue characteristic of $k$.

Theorem 2.1. The invariant $\varphi(X)$ is given by the following table, depending on the type of the special fiber of the regular minimal model of $X$ :

| Type | $\delta_{0}$ | $\delta_{1}$ | $\varepsilon$ | $\varphi$ |
| :--- | :---: | :---: | :---: | :---: |
| $I$ | 0 | 0 | 0 | 0 |
| $I I(a)$ | 0 | $a$ | $a$ | $a$ |
| $I I I(a)$ | $a$ | 0 | $\frac{1}{6} a$ | $\frac{1}{12} a$ |
| $I V(a, b)$ | $b$ | $a$ | $a+\frac{1}{6} b$ | $a+\frac{1}{12} b$ |
| $V(a, b)$ | $a+b$ | 0 | $\frac{1}{6}(a+b)$ | $\frac{1}{12}(a+b)$ |
| $V I(a, b, c)$ | $b+c$ | $a$ | $a+\frac{1}{6}(b+c)$ | $a+\frac{1}{12}(b+c)$ |
| $V I I(a, b, c)$ | $a+b+c$ | 0 | $\frac{1}{6}(a+b+c)+\frac{1}{6} \frac{a b c}{a b+b c+c a}$ | $\frac{1}{12}(a+b+c)-\frac{5}{12} \frac{a b c}{a b+b c+c a}$ |

For $\lambda(X)$ the formula:

$$
10 \lambda(X)=\delta_{0}(X)+2 \delta_{1}(X)
$$

holds.

Let us indicate how the theorem is proved. Let $r$ be the effective resistance function on the reduction graph $R(X)$ of $X$, extended bilinearly to a pairing on $\operatorname{Div}(R(X))$. By Corollary 2.4 of [2] the formula:

$$
\varphi(X)=-\frac{1}{4}\left(\delta_{0}(X)+\delta_{1}(X)\right)-\frac{3}{8} r(K, K)+2 \varepsilon(X)
$$

holds, where $K$ is the canonical divisor on $R(X)$. The invariant $r(K, K)$ is calculated by viewing $R(X)$ as an electrical circuit. The invariant $\varepsilon$ is calculated on the basis of explicit expressions for the admissible measure and admissible Green's function; see [7] and [8] for such computations. The results we find are as follows:

| Type | $\delta_{0}$ | $\delta_{1}$ | $r(K, K)$ | $\varepsilon$ |
| :--- | :---: | :---: | :---: | :---: |
| $I$ | 0 | 0 | 0 | 0 |
| $I I(a)$ | 0 | $a$ | $2 a$ | $a$ |
| III $(a)$ | $a$ | 0 | 0 | $\frac{1}{6} a$ |
| $I V(a, b)$ | $b$ | $a$ | $2 a$ | $a+\frac{1}{6} b$ |
| $V(a, b)$ | $a+b$ | 0 | 0 | $\frac{1}{6}(a+b)$ |
| $V I(a, b, c)$ | $b+c$ | $a$ | $2 a$ | $a+\frac{1}{6}(b+c)$ |
| $V I I(a, b, c)$ | $a+b+c$ | 0 | $2 \frac{a b c}{a b+b c+c a}$ | $\frac{1}{6}(a+b+c)+\frac{1}{6} \frac{a b c}{a b+b c+c a}$ |

The values of $\varphi$ follow.
The formula for $\lambda(X)$ is verified for each case separately.

## 3. The archimedean case

Let $X$ be a compact and connected Riemann surface of genus 2. In this section we calculate the invariants $\varphi(X)$ and $\lambda(X)$ of $X$. Let $\operatorname{Pic}(X)$ be the Picard variety of $X$, and for each integer $d$ denote by $\operatorname{Pic}^{d}(X)$ the component of $\operatorname{Pic}(X)$ of degree $d$. We have a canonical theta divisor $\Theta$ on $\operatorname{Pic}^{1}(X)$, and a standard hermitian metric $\|\cdot\|$ on the line bundle $\mathcal{O}(\Theta)$ on $\operatorname{Pic}^{1}(X)$. Let $\nu$ be its curvature form. We have:

$$
\int_{\operatorname{Pic}^{1}(X)} \nu^{2}=\Theta . \Theta=2 .
$$

Let $K$ be a canonical divisor on $X$, and let $\mathbf{P}$ be the set of 10 points $P$ of $\operatorname{Pic}^{1}(X)-\Theta$ such that $2 P \equiv K$. Denote by $\|\theta\|$ the norm of the canonical section $\theta$ of $\mathcal{O}(\Theta)$. We let:

$$
\left\|\Delta_{2}\right\|(X)=2^{-12} \prod_{P \in \mathbf{P}}\|\theta\|^{2}(P)
$$

the normalized modular discriminant of $X$, and we let $\|H\|(X)$ be the invariant of $X$ defined by:

$$
\log \|H\|(X)=\frac{1}{2} \int_{\operatorname{Pic}^{1}(X)} \log \|\theta\| \nu^{2}
$$

These two invariants were introduced in [1].
Theorem 3.1. For the $\varphi$-invariant and the $\lambda$-invariant of $X$, the formulas:

$$
\varphi(X)=-\frac{1}{2} \log \left\|\Delta_{2}\right\|(X)+10 \log \|H\|(X)
$$

and

$$
10 \lambda(X)=-20 \log (2 \pi)-\log \left\|\Delta_{2}\right\|(X)
$$

hold.
The key to the proof is the following lemma. Let $\Phi$ be the map:

$$
X^{2} \rightarrow \operatorname{Pic}^{1}(X), \quad(x, y) \mapsto[2 x-y]
$$

Lemma 3.2. The map $\Phi$ is finite flat of degree 8.

Proof. Let $y \mapsto y^{\prime}$ be the hyperelliptic involution of $X$. We have a commutative diagram:

where $\alpha$ and $\beta$ are isomorphisms, with:

$$
\begin{array}{ccc}
\alpha: X^{2} \rightarrow X^{2}, & \Phi^{\vee}: X^{2} \rightarrow \operatorname{Pic}^{3}(X), & \beta: \operatorname{Pic}^{3}(X) \rightarrow \operatorname{Pic}^{1}(X), \\
(x, y) \mapsto\left(x, y^{\prime}\right), & (x, y) \mapsto[2 x+y], & {[D] \mapsto[D-K]}
\end{array}
$$

It suffices to prove that $\Phi^{\vee}$ is finite flat of degree 8. Let $p: X^{(3)} \rightarrow \operatorname{Pic}^{3}(X)$ be the natural map; then $p$ is a $\mathbf{P}^{1}$-bundle over $\operatorname{Pic}^{3}(X)$, and $\Phi^{\vee}$ has a natural injective lift to $X^{(3)}$. A point $D$ on $X^{(3)}$ is in the image of this lift if and only if $D$, when seen as an effective divisor on $X$, contains a point which is ramified for the morphism $X \rightarrow \mathbf{P}^{1}$ determined by the fiber $|D|$ of $p$ in which $D$ lies. Since every morphism $X \rightarrow \mathbf{P}^{1}$ associated to a $D$ on $X^{(3)}$ is ramified, the map $\Phi^{\vee}$ is surjective. As every morphism $X \rightarrow \mathbf{P}^{1}$ associated to a $D$ on $X^{(3)}$ has only finitely many ramification points, the map $\Phi^{\vee}$ is quasi-finite, hence finite since $\Phi^{\vee}$ is proper. As $X^{2}$ and $\operatorname{Pic}^{3}(X)$ are smooth and the fibers of $\Phi^{\vee}$ are equidimensional, the map $\Phi^{\vee}$ is flat. By Riemann-Hurwitz the generic $X \rightarrow \mathbf{P}^{1}$ associated to a $D$ on $X^{(3)}$ has 8 simple ramification points. It follows that the degree of $\Phi^{\vee}$ is 8 .

Let $G: X^{2} \rightarrow \mathbf{R}$ be the Arakelov-Green's function of $X$, and let $\Delta$ be the diagonal divisor on $X^{2}$. We have a canonical hermitian metric on the line bundle $\mathcal{O}(\Delta)$ on $X^{2}$ by putting $\|1\|(x, y)=G(x, y)$, where 1 is the canonical section of $\mathcal{O}(\Delta)$. Denote by $h_{\Delta}$ the curvature form of $\mathcal{O}(\Delta)$. We have:

$$
\int_{X^{2}} h_{\Delta}^{2}=\Delta \cdot \Delta=-2
$$

Restricting $\mathcal{O}(\Delta)$ to a fiber of any of the two natural projections of $X^{2}$ onto $X$ and taking the curvature form we obtain the Arakelov (1,1)-form $\mu$ on $X$. We have $\int_{X} \mu=1$ and:

$$
\int_{X} \log G(x, y) \mu(x)=0
$$

for each $y$ on $X$. Let $\left(\omega_{1}, \omega_{2}\right)$ be an orthonormal basis of $\mathrm{H}^{0}\left(X, \omega_{X}\right)$, the space of holomorphic differentials on $X$. We can write explicitly:

$$
h_{\Delta}(x, y)=\mu(x)+\mu(y)-i \sum_{k=1}^{2}\left(\omega_{k}(x) \bar{\omega}_{k}(y)+\omega_{k}(y) \bar{\omega}_{k}(x)\right)
$$

and:

$$
\mu(x)=\frac{i}{4} \sum_{k=1}^{2} \omega_{k}(x) \bar{\omega}_{k}(x) .
$$

By [11, Proposition 2.5.3] we have:

$$
\varphi(X)=\int_{X^{2}} \log G h_{\Delta}^{2} .
$$

We compute the integral using our results from (4) and [5]. Let $W$ be the divisor of Weierstrass points on $X$, and let $p_{1}: X^{2} \rightarrow X$ be the projection onto the first
coordinate. The divisor $W$ is reduced effective of degree 6. According to [3, p. 31] there exists a canonical isomorphism:

$$
\sigma: \Phi^{*} \mathcal{O}(\Theta) \stackrel{\cong}{\rightrightarrows} \mathcal{O}\left(2 \Delta+p_{1}^{*} W\right)
$$

of line bundles on $X^{2}$, identifying the canonical sections on both sides. In 4, Proposition 2.1] we proved that this isomorphism has a constant norm over $X^{2}$. Thus, the curvature forms on both sides are equal:

$$
\Phi^{*} \nu=2 h_{\Delta}+6 \mu(x) \quad \text { on } X^{2} .
$$

Squaring both sides of this identity we get:

$$
h_{\Delta}^{2}=\frac{1}{4} \Phi^{*}\left(\nu^{2}\right)-6 h_{\Delta} \mu(x),
$$

since $\mu(x)^{2}=0$. Denote by $S(X)$ the norm of $\sigma$. Then we have:

$$
2 \log G(x, y)+\sum_{w} \log G(x, w)=\log \|\theta\|(2 x-y)+\log S(X)
$$

for generic $(x, y) \in X^{2}$, where $w$ runs through the Weierstrass points of $X$. By fixing $y$ and integrating against $\mu(x)$ on $X$ we find that:

$$
\log S(X)=-\int_{X} \log \|\theta\|(2 x-y) \mu(x)
$$

By integrating against $h_{\Delta}^{2}$ on $X^{2}$ we obtain:

$$
2 \varphi(X)+\sum_{w} \int_{X^{2}} \log G(x, w) h_{\Delta}^{2}=-2 \log S(X)+\int_{X^{2}} \log \|\theta\|(2 x-y) h_{\Delta}^{2}
$$

As we have:

$$
h_{\Delta}^{2}=2 \mu(x) \mu(y)-\sum_{k, l=1}^{2}\left(\omega_{k}(x) \bar{\omega}_{l}(x) \bar{\omega}_{k}(y) \omega_{l}(y)+\bar{\omega}_{k}(x) \omega_{l}(x) \omega_{k}(y) \bar{\omega}_{l}(y)\right)
$$

it follows that:

$$
\int_{X^{2}} \log G(x, w) h_{\Delta}^{2}=0
$$

for each $w$ in $W$ and hence we simply have:

$$
2 \varphi(X)=-2 \log S(X)+\int_{X^{2}} \log \|\theta\|(2 x-y) h_{\Delta}^{2}
$$

Using our earlier expression for $h_{\Delta}^{2}$ this becomes:

$$
2 \varphi(X)=-2 \log S(X)+\int_{X^{2}} \log \|\theta\|(2 x-y)\left(\frac{1}{4} \Phi^{*}\left(\nu^{2}\right)-6 h_{\Delta} \mu(x)\right)
$$

It is easily verified that $h_{\Delta} \mu(x)=h_{\Delta} \mu(y)=\mu(x) \mu(y)$ and hence:

$$
\int_{X^{2}} \log \|\theta\|(2 x-y) h_{\Delta} \mu(x)=\int_{X^{2}} \log \|\theta\|(2 x-y) \mu(x) \mu(y)=-\log S(X) .
$$

From Lemma 3.2 it follows that:

$$
\int_{X^{2}} \log \|\theta\|(2 x-y) \Phi^{*}\left(\nu^{2}\right)=8 \int_{\operatorname{Pic}^{1}(X)} \log \|\theta\| \nu^{2}=16 \log \|H\|(X)
$$

All in all we find:

$$
\varphi(X)=2 \log S(X)+2 \log \|H\|(X)
$$

Let $\delta_{F}(X)$ be the Faltings delta-invariant of $X$. According to [5] Corollary 1.7] the formula:

$$
\log S(X)=-16 \log (2 \pi)-\frac{5}{4} \log \left\|\Delta_{2}\right\|(X)-\delta_{F}(X)
$$

holds, and in turn, according to [1, Proposition 4] we have:

$$
\delta_{F}(X)=-16 \log (2 \pi)-\log \left\|\Delta_{2}\right\|(X)-4 \log \|H\|(X) .
$$

The formula:

$$
\varphi(X)=-\frac{1}{2} \log \left\|\Delta_{2}\right\|(X)+10 \log \|H\|(X)
$$

follows.
By definition we have:

$$
\lambda(X)=\frac{1}{30} \varphi(X)+\frac{1}{12} \delta_{F}(X)-\frac{2}{3} \log (2 \pi)
$$

so we obtain:

$$
10 \lambda(X)=-20 \log (2 \pi)-\log \left\|\Delta_{2}\right\|(X)
$$

by using [1, Proposition 4] once more.

## References

[1] J.-B. Bost, Fonctions de Green-Arakelov, fonctions thêta et courbes de genre 2. C.R. Acad. Sci. Paris Ser. I 305 (1987), 643-646.
[2] X. Faber, The geometric Bogomolov conjecture for small genus curves. Preprint, arXiv:0803.0855
[3] J. D. Fay, Theta functions on Riemann surfaces. Lect. Notes in Math. vol. 352, SpringerVerlag 1973.
[4] R. de Jong, Arakelov invariants of Riemann surfaces. Doc. Math. 10 (2005), 311-329.
[5] R. de Jong, Faltings' delta-invariant of a hyperelliptic Riemann surface. In: G. van der Geer, B. Moonen, R. Schoof (eds.), Proceedings of the Texel Conference "The analogy between number fields and function fields", Birkhäuser Verlag 2005.
[6] Q. Liu, Conducteur et discriminant minimal de courbes de genre 2. Compositio Math. 94 (1994), 51-79.
[7] A. Moriwaki, Bogomolov conjecture over function fields for stable curves with only irreducible fibers. Compositio Math. 105 (1997), 125-140.
[8] A. Moriwaki, Bogomolov conjecture for curves of genus 2 over function fields. J. Math. Kyoto Univ. 36 (1996), 687-695.
[9] T. Saito, The discriminants of curves of genus 2. Compositio Math. 69 (1989), 229-240.
[10] K. Ueno, Discriminants of curves of genus 2 and arithmetic surfaces. In: Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, Kinokuniya, Tokyo 1987.
[11] S.-W. Zhang, Gross-Schoen cycles and dualising sheaves. Preprint, arXiv:0812.0371

Address of the author:

Robin de Jong
Mathematical Institute
University of Leiden
PO Box 9512
2300 RA Leiden
The Netherlands
Email: rdejong@math.leidenuniv.nl


[^0]:    The author is supported by a VENI grant from the Netherlands Organisation for Scientific Research (NWO). He thanks the Max Planck Institut für Mathematik in Bonn for its hospitality during a visit.

